1. 首页
  2. 数据分析

【培训】CDA 数据建模师 Level 2(6天),进阶,进阶,进阶!

CDALevelⅡ:建模分析师。两年以上数据分析岗位工作经验,或通过CDALevelⅠ认证半年以上。在政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。在LevelⅠ的基础之上深入掌握高级多元统计方法,并且拓展时间序列分析和主要数据挖掘的理论知识与业界运用;能够熟练使用SPSSModeler、SAS、R、Pyhton等至少一个专业数据挖掘软件实现相关算法;具有按照数据挖掘标准流程进行项目需求分析、数据验证、建模与模型评估的能力。

CDALevelⅡ培训课程安排

背景介绍

CDALevelⅠ为基础薄弱的学员提供了入行的机会,能够结合业务完成基本的数据分析并作出数据报告。但企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要通过什么样的方法,才能快速便捷的提供对决策有价值的信息,是现代企业所面临最迫切性的问题。因此,在CDALevelⅠ的基础上,CDALevelⅡ(建模分析师)即为企业决策提供及时有效、易实现、可信赖的数据支持。

在建模分析师中,数据挖掘(DataMining)技术无疑是他们最强有力的核心竞争力。数据挖掘强调与现有信息系统的整合,以提供决策者做决策时所需的情报,或转化成经营智慧,以作为调整营运策略方针的辅助工具。以顾客关系管理(CRM)为例,数据挖掘是整个顾客关系管理的核心。其不但可以准确的定位目标市场,进行精准营销,还可以帮助业务人员了解客户深层需求,针对大量客户进行客制化,也就是所谓的一对一营销。

本课程的目的就是要针对数据挖掘整套流程,根据CDALevelⅡ大纲标准,以互联网、金融、电信、电商和零售业为案例背景,开设4个不同的专题课程,分别为:SPSSMODELER数据挖掘;PYTHON数据挖掘;SAS数据挖掘;R语言数据挖掘。学员可以根据自身的需求任选一个专题,培训中将软件与商业案例有效的结合,讲授如何在实际工作中搭建数据挖掘环境,制定分类数据挖掘的标准流程,让学员胜任全方位的数据挖掘运用场景。

CDALEVELⅡ课程安排

项目名称 CDALevelⅡ建模分析师系统培训
时间

《CDALevelII建模分析师-SPSSMODELER专题:

深圳:5月19-22日&5月28-29日(6天)

成都:7月29-31,8月5-7日(6天)

《CDALevelII建模分析师-SAS专题:

上海:64-511-1218-19日(6天)

CDALEVEL2建模分析师-R语言》专题:

北京:528-2964-511-12日(6天)

广州:5月28-29,6月4-5,11-12日(6天)

地点

面授班:北京,人大经济论坛教室

面授班:上海,人民广场教室

面授班:深圳,高新科技园

远程班:在线同步直播

价格

面授:5900元

远程:4400元

优惠

1.全日制学生及CDALEVEL老学员8折优惠(学生证证明文件)

2.同一单位三人及以上报名9折优惠,五人及以上8折优惠

3.CDALEVEL等级资格证书持有者立省1000元

4.同时报名参加LEVEL和LEVELⅡ享受8优惠

点击查看LEVELⅠ课程详情以上优惠不可叠加!

5.报名任何一个专题可额外添加1500元获得另一个专题的全套视频

证书认证 1.可申请报考《CDALEVEL等级认证证书》(荐:含金量高)

2.可申请《数据分析师证书》,申请费用400元(培训后即可得到)

以上双证皆自愿申请

现场班福利 全套视频资料,终身学习,在线答疑

学员对象:

1)各行业数据分析、数据挖掘从业者

2)金融、电信、零售、医学等各行业业务数据分析人员

3)政府事业单位大数据及数据挖掘项目人员

4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员

5)对数据挖掘感兴趣的各界人员

学员基础要求:

1)掌握CDALEVELⅠ大纲要求;

2)报名赠送《SAS初级视频》/《PYTHON初级视频》/《R语言视频》,提前观看视频做好预习工作。

课程收益

(1)了解什么是顾客关系管理;

(2)了解顾客关系管理系统的架构及其组成元素;

(3)了解如何利用顾客关系管理系统来进行营销活动;

(4)了解什么是数据挖掘(DataMining);

(5)掌握数据挖掘技术的功能分类;

(6)掌握数据挖掘技术的绩效增益;

(7)了解数据挖掘技术的产业标准;

(8)掌握如何利用数据挖掘技术来筛选关键变量(KeyAttribute);

(9)掌握如何利用数据挖掘技术来进行交叉销售(Cross-Selling);

(10)掌握如何利用数据挖掘技术来评估客户的信用风险(CreditRisk);

(11)了解如何利用数据挖掘技术来分析顾客行为、产生商业智慧并发展营销策略。

(12)掌握如何使用数据挖掘工具SPSSModeler/SAS/PYTHON/R来完成上述的各项工作。

(13)掌握构建信用打分卡的流程。

详细大纲

SPSS Modeler专题(6天)

深圳:2016年5月19-21,27-29日

北京:2016年6月10-12,17-19日

主题

以企业场景、真实案例教学方式,利用SPSSMODELER来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。

应用范围

《营销活动及信用风险控制》《企业如何处理原始数据》《如何根据业务选取有效变量》《如何建立交叉销售模型》《如何建立信用评分模型》《如何进行模型优化》《企业如何建立预测模型》《客户分群精准化营销》

算法理论

KDD、CRISPDM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析

案例操作

【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】

SAS专题

(6天)

上海:2016年6月4-5,11-12,18-19日

主题

以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。

应用范围

《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》

软件技术

《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》

算法理论

线性回归–逻辑回归–决策树–组合算法–神经网络–朴素贝叶斯–MBR(KNN)–聚类分析–关联规则

案例操作

【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】

R语言专题

(6天)

北京:5月28-29,6月4-5,11-12日(6天)

主题

以R为工具,讲解R语言软件数据挖掘编程技术,并运用R

应用范围

《学术界》《客户预测与客户流失》《信用违约建模》《银行金融业》

软件技术

《R常用包》《R语言编程》《预测模型》《降维》《分类模型》《样本聚类》

算法理论

朴素贝叶斯–决策树–KNN–逻辑回归–神经网络–SVM–岭回归–Lasso算法–装袋法–Adaboost算法–主成分分析PCA–K-means–谱聚类–密度聚类–关联规则–序列模式

案例操作

【制作经营业务BI常用图表】【婚恋网站是否可以成功约会预测】【客户流失预测】【零售业客户价值预测模型】【信用违约建模案例】【银行客户购物篮分析】

主要操作案例:

1.银行客户营销案例:某银行希望通过提供客户对的营销活动,在未来实现更多的获利。此案例的目的是想根据以往的促销活动,利用数据挖掘找出会对营销活动有响应的客户特征,并根据建模的结果产生要邮寄的促销客户名单。

2.信用评等案例:某银行希望根据客户过去的贷款数据,利用数据挖掘来预测新的贷款者,核贷后会逾期的机率,以做为银行是否核贷的依据,或提供给客户其他类型的贷款产品。

3.电信客户分类(不同套餐选择)案例:某电信服务提供商通过客户使用服务的方式,将客户分为四类人。此案例的目的是想根据人口统计数据,利用数据挖掘找出这四类人的特征,并发掘这四类人的潜在新客户。

4.电信客户流失案例:某电信服务提供商非常关注是否客户会流失到竞争对手。假如服务使用的数据可以用来预测哪些客户有可能被转移到另一个提供商,则此提供商可提供客制化的优惠,以尽可能留住客户。此案例的目的是想根据服务使用的数据,利用数据挖掘来预测客户的流失。

5.新车设计案例:某汽车制造商开发两种新车(汽车及卡车)的原型。在将新车型引入至产品系列之前,该制造商想知道竞争对手已经上市的车辆中,哪些与这两款产品的原型最为相似,以确定这两种新车将与哪些车型展开竞争。

次要操作案例:

案例1.天气(Weather)

案例2.玻璃制品(Glass)

案例3.电信产品跨销售(Cross-Selling)

4.药物治疗(DragDiagnosis)

案例5.糖尿病(Diabetes)案例6.乳癌(BreastCancer)

案例7.临床路径选择(ClinicalPath)

案例8.电离层雷达侦测(Ionosphere)

案例9.寿险推销(InsurancePromotion)案例10.影像分类(Image)

案例11.便利超商选点(ConvenientStore)

案例12.零售促销预测(RetailPromotion)

案例13.房价(HomePrice)预测

案例14.汽车油耗(MPG)预测案例15.CPU效能(CPUPerformance)预测

案例16.银行客户购买金融商品(FinancialProduct)之关联分析(AssociationAnalysis)

案例17.文具(Stationery)及健康美容(Health&Beauty)用品之关联分析(AssociationAnalysis)案例18.银行客户购买金融商品(FinancialProduct)之序列分析(SequentialAnalysis)案例

讲师简介

李御玺,教授,国立台湾大学资讯工程博士,铭传大学资讯工程学系教授,铭传大学大数据研究中心主任,中华数据挖掘协会理事,云南财经大学信息学院客座教授,浙江大学城市学院客座教授,厦门大学数据挖掘中心顾问,中国人民大学数据挖掘中心顾问,IBMSPSS-China顾问,SAS-Taiwan顾问。在其相关研究领域已发表超过260篇以上的研究论文,同时也是国科会与教育部多个相关研究计划的主持人。

服务过的客户包括:中国工商局、中信银行、台新银行、联邦银行、新光银行、新竹国际商业银行(现已并入渣打银行)、第一银行、永丰银行、远东银行、美商大都会人寿、嘉义基督教医院、台湾微软、零售业如赫莲娜(HelenaRubinstein)化妆品公司、特立和乐(HOLA)公司、航空公司如东方航空公司、中华航空公司、汽车行业如福特(Ford)汽车公司;政府行业如国税局等。

徐筱刚男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。

常国珍,曾为德勤管理咨询高级数据挖掘咨询顾问,SAS官方培训资深讲师,2014年SAS软件大赛判卷人,曾以数据挖掘工程师身份就职于亚信科技(中国)有限公司市场部。具有八年的数据挖掘实战经验,主攻分类模型,涉及客户精准营销、信用评估、价值提升、欺诈侦测和流失预警等数据挖掘主题,尤其熟悉银行个人客户精准营销的建模工作。

资格认证:SAS全球认证“Certified Statistical Business Analyst Using SAS 9 Regression and Modeling”、“Certified Advanced Programmer for SAS 9”。

邹博,北师大计算机博士毕业,在科学院从事机器学习和数据挖掘科研工作,主持完成三维计算几何行业建模软件,擅长方向为机器学习、数据挖掘、自然语言处理、计算几何。主持三维数字地质图制图技术及其应用、三维地质建模应用示范研究、遥感信息解译与像元增强研究等多项部级科研项目,对大型软件架构有深刻理解,改进了多项遥感图像的分割、分类、增强算法并用于实际。在多家大学和教育机构担任机器学习和数据挖掘讲师,实战经验丰富,算法推导细致透彻,广受学员好评。

资格认证

CDALEVELⅡ资格认证证书

CDA考试安排:

1.考试时间2016年6月26日

2.考试内容:CDALEVLEⅡ建模分析师大纲。

3.报名费用:1500元/人。参加CDA系统培训学员费用为1000/人。

4.其他:CDA考试一次不过可申请补考,补考费用为原价一半。证书3年审核一次。

【报名咨询】

电话:400-070-7620 手机:13828892967 江老师

点击原文链接报名

往期培训:

【培训】CDA 数据建模师 Level 2(6天),进阶,进阶,进阶!

原文始发于微信公众号(PPV课数据科学社区):【培训】CDA 数据建模师 Level 2(6天),进阶,进阶,进阶!

原创文章,作者:ppvke,如若转载,请注明出处:http://www.ppvke.com/archives/14963

联系我们

4000-51-9191

在线咨询:点击这里给我发消息

工作时间:周一至周五,9:30-18:30,节假日休息