Category: 深度学习-唐宇迪

【系列】深度学习入门课程学习笔记06 反向传播

咱们在之前的课程讲了一系列的前向传播的知识点,前向传播也就是从输入到最终计算出LOSS值这一系列过程,那么这节课咱们要讲一个更重要的知识点也就是反向传播。反向传播最直观的意思就是说咱们要从LOSS值入手一步步的往回看,看什么呢?就是要看咱们的每一个权重参数对最终的LOSS值做了多大的贡献。

深度学习入门课程学习笔记05 最优化

通过对之前课程的学习,我们已经能够对于一个输入数据得出它的最终的一个LOSS值,那么下面就该咱们如何去找到一个最优的参数矩阵,使得最终的LOSS值达到一个最小的范围。这就引入了咱们的最优化问题。下面咱们通过几种解决方案来详细讨论如何处理这个最优化的问题

【系列】深度学习入门课程学习笔记03 损失函数

在前面一节咱们介绍了得分函数,就是给定一个输入,对于所有类别都要给出这个输入属于该类别的一个分值,如上图所示,对于每一个输入咱们都有了它属于三个类别的得分,但是咱们光有这个得分却不知道如何来评判现在的一个分类效果,这节课咱们就要用损失函数来评估分类效果的好坏,而且不光是好坏还要表现出来有多好有多坏!

切换注册

登录

忘记密码 ?

切换登录

注册