1. 首页
  2. 数据挖掘

TensorFlow图像分类教程

TensorFlow图像分类教程

导读:深度学习算法与计算机硬件性能的发展,使研究人员和企业在图像识别、语音识别、推荐引擎和机器翻译等领域取得了巨大的进步。六年前,视觉模式识别领域取得了第一个超凡的成果。两年前,Google大脑团队开发了TensorFlow,并将深度学习巧妙的应用于各个领域。现在,TensorFlow则超越了很多用于深度学习的复杂工具。

利用TensorFlow,你可以获得具有强大能力的复杂功能,其强大的基石来自于TensorFlow的易用性。

在这个由两部分组成的系列中,我将讲述如何快速的创建一个应用于图像识别的卷积神经网络。

TensorFlow计算步骤是并行的,可对其配置进行逐帧视频分析,也可对其扩展进行时间感知视频分析。

本系列文章直接切入关键的部分,只需要对命令行和Python有最基本的了解,就可以在家快速地创建一些令你激动不已的项目。本文不会深入探讨TensorFlow的工作原理,如果你想了解更多,我会提供大量额外的参考资料。本系列所有的库和工具都是免费开源的软件。

工作原理

本教程旨在把一个事先被放到训练过的类别里的图片,通过运行一个命令以识别该图像具体属于哪个类别。步骤如下图所示:

TensorFlow图像分类教程

  • 标注:管理训练数据。例如花卉,将雏菊的图像放到“雏菊”目录下,将玫瑰放到“玫瑰”目录下等等,将尽可能多的不同种类的花朵按照类别不同放在不同的目录下。如果我们不标注“蕨类植物”,那么分类器永远也不会返回“蕨类植物”。这需要每个类型的很多样本,因此这一步很重要,并且很耗时。(本文使用预先标记好的数据以提高效率)

  • 训练:将标记好的数据(图像)提供给模型。有一个工具将随机抓取一批图像,使用模型猜测每种花的类型,测试猜测的准确性,重复执行,直到使用了大部分训练数据为止。最后一批未被使用的图像用于计算该训练模型的准确性。

  • 分类:在新的图像上使用模型。例如,输入:IMG207.JPG,输出:雏菊。这个步骤快速简单,且衡量的代价小。

训练和分类

本教程将训练一个用于识别不同类型花朵的图像分类器。深度学习需要大量的训练数据,因此,我们需要大量已分类的花朵图像。值得庆幸的是,另外一个模型在图像收集和分类这方面做得非常出色,所以我们使用这个带有脚本的已分类数据集,它有现成且完全训练过的图像分类模型,重新训练模型的最后几层以达到我们想要的结果,这种技术称为迁移学习。

我们重新训练的模型是Inception v3,最初是在2015年12月发表的论文“重新思考计算机视觉的Inception架构”中有做论述。

直到我们做了这个约20分钟的训练,Inception才知道如何识别雏菊和郁金香,这就是深度学习中的“学习”部分。

安装

首先,在所选的平台上安装Docker。

在很多TensorFlow教程中最先且唯一依赖的就是Docker(应该表明这是个合理的开始)。我也更喜欢这种安装TensorFlow的方法,因为不需要安装一系列的依赖项,这可以保持主机(笔记本或桌面)比较干净。

Bootstrap TensorFlow

安装Docker后,我们准备启动一个训练和分类的TensorFlow容器。在硬盘上创建一个2GB空闲空间的工作目录,创建一个名为local的子目录,并记录完整路径。

docker run-v/path/to/local:/notebooks/local–rm-it–nametensorflowtensorflow/tensorflow:nightly/bin/bash

下面是命令解析:

-v /path/to/local:/notebooks/local将刚创建的local目录挂载到容器中适当的位置。如果使用RHEL、Fedora或其他支持SELinux的系统,添加:Z允许容器访问目录。

–rm退出时令docker删除容器

-it连接输入输出,实现交互。

–name tensorflow将容器命名为tensorflow,而不是sneaky_chowderhead或任何Docker定义的随机名字。

tensorflow/tensorflow:nightly从Docker Hub(公共图像存储库)运行tensorflow/tensorflow的nightly图像,而不是最新的图像(默认为最近建立/可用图像)。使用nightly图像而不是latest图像,是因为(在写入时)latest包含的一个bug会破坏TensorBoard,这是我们稍后需要的一个数据可视化工具。

/bin/bash指定运行Bash shell,而不运行系统默认命令。

训练模型

在容器中运行下述命令,对训练数据进行下载和完整性检查。

curl-Ohttp://download.tensorflow.org/example_images/flower_photos.tgzecho’db6b71d5d3afff90302ee17fd1fefc11d57f243fflower_photos.tgz’|sha1sum-c

如果没有看到“flower_photos.tgz”信息:说明文件不正确。如果上诉curl或sha1sum步骤失败,请手动下载训练数据包并解压(SHA-1校验码:db6b71d5d3afff90302ee17fd1fefc11d57f243f)到本地主机的local目录下。

现在把训练数据放好,然后对再训练脚本进行下载和完整性检查。

mvflower_photos.tgz local/cdlocalcurl-Ohttps://raw.githubusercontent.com/tensorflow/tensorflow/10cf65b48e1b2f16eaa826d2793cb67207a085d0/tensorflow/examples/image_retraining/retrain.pyecho’a74361beb4f763dc2d0101cfe87b672ceae6e2f5retrain.py’|sha1sum-c

确认retrain.py有正确的内容,你应该看到retrain.py: OK.。

最后,开始学习!运行再训练脚本。

python retrain.py –image_dir flower_photos –output_graph output_graph.pb–output_labels output_labels.txt

如果遇到如下错误,忽略它:

TypeError: not all arguments converted during string formatting Logged from filetf_logging.py, line 82.

随着retrain.py的运行,训练图像会自动的分批次训练、测试和验证数据集。

在输出上,我们希望有较高的“训练精度”和“验证精度”,以及较低的“交叉熵”。有关这些术语的详细解释,请参照“如何就新图片类型再训练Inception的最后一层”。在当前的硬件上的训练约30分钟。

请注意控制台输出的最后一行:

INFO:tensorflow:Finaltestaccuracy =89.1%(N=340)

这说明我们已经得到了一个模型:给定一张图像,10次中有9次可正确猜出是五种花朵类型中的哪一种。由于提供给训练过程的随机数不同,分类的精确度也会有所不同。

分类

再添加一个小脚本,就可以将新的花朵图像添加到模型中,并输出测试结果。这就是图像分类。

将下述脚本命名为classify.py保存在本地local目录:

importtensorflowastf,sysimage_path=sys.argv[1]graph_path=’output_graph.pb’labels_path=’output_labels.txt’# Read in the image_dataimage_data=tf.gfile.FastGFile(image_path,’rb’).read()# Loads label file, strips off carriage returnlabel_lines=[line.rstrip()forline intf.gfile.GFile(labels_path)]# Unpersists graph from filewithtf.gfile.FastGFile(graph_path,’rb’)asf: graph_def=tf.GraphDef() graph_def.ParseFromString(f.read()) _=tf.import_graph_def(graph_def,name=”)# Feed the image_data as input to the graph and get first predictionwithtf.Session()assess: softmax_tensor=sess.graph.get_tensor_by_name(‘final_result:0’) predictions=sess.run(softmax_tensor, {‘DecodeJpeg/contents:0’: image_data}) # Sort to show labels of first prediction in order of confidence top_k=predictions[0].argsort()[-len(predictions[0]):][::-1] fornode_idintop_k: human_string=label_lines[node_id] score=predictions[0][node_id] print(‘%s (score = %.5f)’%(human_string,score))

为了测试你自己的图像,保存在local目录下并命名为test.jpg,运行(在容器内)python classify.py test.jpg。输出结果如下:

sunflowers(score=0.78311)daisy(score=0.20722)dandelion(score=0.00605)tulips(score=0.00289)roses(score=0.00073)

数据说明了一切!模型确定图像中的花朵是向日葵的准确度为78.311%。数值越高表明匹配度越高。请注意,只能有一个匹配类型。多标签分类则需要另外一个不同的方法。

分类脚本中的图表加载代码已经被破坏,在这里,我用graph_def = tf.GraphDef()等作为图表加载代码。

利用零基础知识和一些代码,我们建了一个相当好的花卉图像分类器,在现有的笔记本电脑上每秒大约可以处理5张图像。

希望你能够继续关注系列其他博文。

以上为译文。本文由阿里云云栖社区组织翻译。

文章原标题《Learn how to classify images with TensorFlow》,译者:Mags,审校:袁虎。

近期课程推荐

TensorFlow图像分类教程

深圳班:1月13-14日(2天)

有意者点击图片查看全文

原文始发于微信公众号(PPV课数据科学社区):TensorFlow图像分类教程

原创文章,作者:ppvke,如若转载,请注明出处:http://www.ppvke.com/archives/7957

联系我们

4000-51-9191

在线咨询:点击这里给我发消息

工作时间:周一至周五,9:30-18:30,节假日休息